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MODULES AND HILBERT FUNCTIONS

As a k-vector space,
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The (finite) sequence Hg = (1,3, 1) is called the Hilbert function of R.



MY FAVORITE EXAMPLE

The R-module M = R/(Z) has Hilbert function Hy = (1,2,0) = (1,2):



PROPERTIES OF HILBERT FUNCTIONS

Fact1. Let0 — L — M — N — 0 be a (graded) short exact sequence
of R-modules. Then Hy + H = Hp.
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PROPERTIES OF HILBERT FUNCTIONS

Fact1. Let0 — L — M — N — 0 be a (graded) short exact sequence
of R-modules. Then Hy + H = Hp.

Consider
0—(2) -R—=R/(2)—0.
We can calculate Hz) as follows:
Hz = Hr — Hg/)
=(1,3,1)—(1,2,0)
=(0,1,1).

I want to say (0,1,1) = (1,1).
Note that R @ (Z) has Hilbert function (1, 4,2).



INDECOMPOSABLE MODULES

As an R-module, R itself is indecomposable.
That is, whenever R = M @ N, it follows that implies M = R, N = 0.



INDECOMPOSABLE MODULES

As an R-module, R itself is indecomposable.
That is, whenever R = M @ N, it follows that implies M = R, N = 0.

Let | be an ideal generated by homogeneous polynomials. The
R-modules M = R/l and | are also indecomposable.



INDECOMPOSABLE MODULES

As an R-module, R itself is indecomposable.
That is, whenever R = M @ N, it follows that implies M = R, N = 0.

Let | be an ideal generated by homogeneous polynomials. The
R-modules M = R/l and | are also indecomposable.

Fact 2. Suppose
03l R=>FSFP5... 5 5M=0

is an exact sequence of R-modules, where F' is a free R-module for

each i. Then M is called the n-th cosyzygy of I, Cosyz"(l), and M is
indecomposable.



BACKGROUND



SETTING UP THE QUESTION

Recall, R = k[x,y,2]/(x* — y?,x* — 22, Xy, XZ,yz).
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SETTING UP THE QUESTION

More generally, R = k[xi, ..., xe]/(xf —x,xix |1 < i< ] <e)is called
a Short Gorenstein Ring of embedding dimension e.

Prop (Avramov-lyengar-Sega). Let R be a SG.R. withe >3. IfMis a
Koszul R-module, then the Hilbert function Hy = (p, q) where

Ve? —
1<p and O§q<pe+fel+.

Furthermore, given
1<p and 0<qg<p(e—-1),

there exists a Koszul R-module M where Hy = (p, q).



BUT HERE'S HOW TO REALLY THINK ABOUT IT

_ etvel-4

All Good: 1< p, 0<q<p(e—1)
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Fibonacci sequence: 1,1, 2, 3,5, 8, 13, 21, 34, ...



CONTINUED FRACTIONS AND CONVERGENCE

Fibonacci sequence: 1,1, 2, 3,5, 8, 13, 21, 34, ...

Using the theory of continued fractions and convergents, we find
that the sequence (2/1,5/2,13/5,34/13,...) converges very quickly
to ¢ from below.



CONTINUED FRACTIONS AND CONVERGENCE

Fibonacci sequence: 1,1, 2, 3,5, 8, 13, 21, 34, ...

Using the theory of continued fractions and convergents, we find
that the sequence (2/1,5/2,13/5,34/13,...) converges very quickly
to ¢ from below.

Geometrically, that means it's enough to find modules with the
Hilbert functions

(1,2), (2,5), (5,13), (13,34), ...
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CONSTRUCTING THE MODULES

Recap:
Fact 1. Hilbert function - additive on S.E.S.
Fact 2. There's an S.E.S.

0 — Cosyz,_4(1) = F" — Cosyz,(I) = 0

(and Cosyz, (1) is indecomposable).



CONSTRUCTING THE MODULES

Consider | = (z). We know Hcosyz, 1y = Hryi = (1,2).

Then the Hilbert function of Cosyz,(I) can be found from the exact
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CONSTRUCTING THE MODULES

Consider | = (z). We know Hcosyz, 1y = Hryi = (1,2).

Then the Hilbert function of Cosyz,(I) can be found from the exact
sequence
0 — Cosyz,(1) = R? — Cosyz,(l) — 0.

Now,
Heosyz,(1) = (2,6,2) —(0,1,2) = (2,5,0) = (2,5).

Repeating this trick,

Heosy,(ty = (5,15,5) — (0,2,5) = (5,13).



THEOREM (AVRAMOV-GIBBONS-WIEGAND)

Let R be a S.G.R. with e > 3. Then there exists a Koszul R-module M
with Hilbert function (p, q) if and only if

/a2 _
1<p and qugp%eg



QUESTIONS?



KOSZUL

Definition. An R-module M is said to be Koszul provided M is
generated in degree 0, has no nonzero free summand, and has a
linear free resolution.

In our setting, if Hyw = (p, q), then:

O O O
BM)= |p ep—q --- (€Bn-1— Pn-2)
0 0 0




THOSE OTHER ORDERED PAIRS? (1,3), (3,8), ...

The only indecomposable non-Koszul R-modules have the form
Cosyz, (X, ..., Xe), and their Hilbert functions use the odd Fibonacci
numbers.
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