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definitions and stuff



modules and hilbert functions

Let R = k[x, y, z]/(x2 − y2, x2 − z2, xy, xz, yz).

As a k-vector space,

R ∼=

⟨x2⟩
⊕

⟨x⟩ ⊕ ⟨y⟩ ⊕ ⟨z⟩
⊕
⟨1⟩

degree 2, “R2”

degree 1, “R1”

degree 0, “R0”

The (finite) sequence HR = (1, 3, 1) is called the Hilbert function of R.
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my favorite example

The R-module M = R/(z) has Hilbert function HM = (1, 2, 0) = (1, 2):

M2 = ⟨x2⟩ = ⟨z2⟩ = 0
M1 = ⟨x⟩ ⊕ ⟨y⟩,
M0 = ⟨1⟩.
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properties of hilbert functions

Fact 1. Let 0 → L → M → N → 0 be a (graded) short exact sequence
of R-modules. Then HN + HL = HM.

Consider
0 → (z) → R → R/(z) → 0.

We can calculate H(z) as follows:

H(z) = HR − HR/(z)

= (1, 3, 1)− (1, 2, 0)
= (0, 1, 1).

I want to say (0, 1, 1) = (1, 1).

Note that R⊕ (z) has Hilbert function (1, 4, 2).
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indecomposable modules

As an R-module, R itself is indecomposable.
That is, whenever R = M⊕ N, it follows that implies M = R, N = 0.

Let I be an ideal generated by homogeneous polynomials. The
R-modules M = R/I and I are also indecomposable.

Fact 2. Suppose

0 → I → R → F1 → F2 → · · · → Fn → M → 0

is an exact sequence of R-modules, where Fi is a free R-module for
each i. Then M is called the n-th cosyzygy of I, Cosyzn(I), and M is
indecomposable.
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background



setting up the question

Recall, R = k[x, y, z]/(x2 − y2, x2 − z2, xy, xz, yz).

Prop (Avramov-Iyengar-Şega). Let R be a S.G.R. with e ≥ 3. If M is a
Koszul R-module, then the Hilbert function HM = (p,q) where

1 ≤ p and 0 ≤ q < pe+
√
e2 − 4
2 .

Furthermore, given

1 ≤ p and 0 ≤ q ≤ p(e− 1),

there exists a Koszul R-module M where HM = (p,q).
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but here’s how to really think about it

All Good: 1 ≤ p, 0 ≤ q ≤ p(e− 1)

Hm
m..

.: 1
≤ p,

p(e
− 1) <

q <
pφ

φ = e+
√
e2−4
2

p

q
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the golden touch

When e = 3,

φ =
e+

√
e2 − 4
2

=
3+

√
5

2

= 1+ 1+
√
5

2

= 1+ 1+ 1
1+ 1

1+···
.

Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, …
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continued fractions and convergence

Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, …

Using the theory of continued fractions and convergents, we find
that the sequence (2/1, 5/2, 13/5, 34/13, . . .) converges very quickly
to φ from below.

Geometrically, that means it’s enough to find modules with the
Hilbert functions

(1,2), (2,5), (5,13), (13,34), …
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once more in pictures

e = 3

p

q

(2, 5)

(5, 13)

(13, 34)

(1, 3)

(3, 8)

(8, 21)
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constructing the modules

Recap:

Fact 1. Hilbert function - additive on S.E.S.

Fact 2. There’s an S.E.S.

0 → Cosyzn−1(I) → Fn → Cosyzn(I) → 0

(and Cosyzn(I) is indecomposable).
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constructing the modules

Consider I = (z). We know HCosyz1(I) = HR/I = (1, 2).

Then the Hilbert function of Cosyz2(I) can be found from the exact
sequence

0 → Cosyz1(I) → R2 → Cosyz2(I) → 0.

Now,
HCosyz2(I) = (2, 6, 2)− (0, 1, 2) = (2, 5, 0) = (2, 5).

Repeating this trick,

HCosyz3(I) = (5, 15, 5)− (0, 2, 5) = (5, 13).
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theorem (avramov-gibbons-wiegand)

Let R be a S.G.R. with e ≥ 3. Then there exists a Koszul R-module M
with Hilbert function (p,q) if and only if

1 ≤ p and 0 ≤ q ≤ pe+
√
e2 − 4
2 .
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questions?



koszul

Definition. An R-module M is said to be Koszul provided M is
generated in degree 0, has no nonzero free summand, and has a
linear free resolution.

In our setting, if HM = (p,q), then:

β(M) =



...
0 0 · · · 0 · · ·
p ep− q · · · (eβn−1 − βn−2) · · ·
0 0 · · · 0 · · ·

...


.
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those other ordered pairs? (1,3), (3,8), …

The only indecomposable non-Koszul R-modules have the form
Cosyzn(x1, . . . , xe), and their Hilbert functions use the odd Fibonacci
numbers.
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